

# SUGGESTED SOLUTION

## CA FINAL NOVEMBER 2016 EXAM

ADVANCED MANAGEMENT ACCOUNTING

## Test Code - FNJ 6003

BRANCH - (MUMBAI) (Date :19.06.2016)

Head Office : Shraddha, 3<sup>rd</sup> Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

| Answ   | er-1 :                  |              |                                                     | (8 Ma        |
|--------|-------------------------|--------------|-----------------------------------------------------|--------------|
| (i)    | Calculation of 'Total L | abour I      | Hours' over the Life Time of the Product 'Kitchen C | are'         |
|        | The average time per    | 250 units is |                                                     |              |
|        | Y <sub>x</sub>          | =            | ax <sub>p</sub>                                     |              |
|        | Y <sub>250</sub>        | =            | $30 \times 250^{-0.3219}$                           |              |
|        | Y <sub>250</sub>        | =            | 30 × 0.1691                                         |              |
|        | Y <sub>250</sub>        | =            | 5.073 hours                                         |              |
|        | Total time for 250 uni  | ts =         | 5.073 hours × 250 units                             |              |
|        |                         | =            | 1,268.25 hours                                      |              |
|        | The average time per    | unit for     | 249 units is                                        |              |
|        | Y <sub>249</sub>        | =            | $30 \times 249^{-0.3219}$                           |              |
|        | Y <sub>249</sub>        | =            | 30 × 0.1693                                         |              |
|        | Y <sub>249</sub>        | =            | 5.079 hours                                         |              |
|        | Total time for 249 uni  | ts =         | 5.079 hours × 249 units                             |              |
|        |                         | =            | 1,264.67 hours                                      |              |
|        | Time for 250th unit     | =            | 1,268.25 hours – 1,264.67 hours                     |              |
|        |                         | =            | 3.58 hours                                          |              |
|        | Total Time for 1,000 ι  | inits =      | (750 units × 3.58 hours) + 1,268.25 hours           |              |
|        |                         | =            | 3,953.25 hours                                      |              |
| (ii)   | Profitability of the Pr | oduct 'k     | Kitchen Care'                                       |              |
| Partic | ulars                   |              | Amount (Rs.)                                        | Amount (Rs.) |

| Sales (1,000 units)                        |                  | 50,00,000        |
|--------------------------------------------|------------------|------------------|
| Less: Direct Material                      | 18,50,000        |                  |
| Direct Labour (3,953.25 hours × Rs. 80)    | 3,16,260         |                  |
| Variable Overheads (1,000 units× Rs.1,000) | <u>10,00,000</u> | <u>31,66,260</u> |
| Contribution                               |                  | 18,33,740        |
| Less: Packing Machine Cost                 |                  | <u>5,00,000</u>  |
| Profit                                     |                  | 13,33,740        |
|                                            |                  |                  |

### (iii) Average 'Target Labour Cost' per unit

| Particulars                                                      | Amount (Rs.) |
|------------------------------------------------------------------|--------------|
| Expected Sales Value                                             | 50,00,000    |
| Less: Desired Profit (1,000 units × Rs. 800)                     | 8,00,000     |
| Target Cost                                                      | 42,00,000    |
| Less: Direct Material (1,000 units × Rs. 1,850)                  | 18,50,000    |
| Variable Cost (1,000 units × Rs. 1,000)                          | 10,00,000    |
| Packing Machine Cost                                             | 5,00,000     |
| Target Labour Cost                                               | 8,50,000     |
| Average Target Labour Cost per unit (Rs. 8,50,000 ÷ 1,000 units) | 850          |

### Answer-2 :

### (i) Computation of Sale Price Per Bottle

### Output: 40,000 Bottles

|                                             | (Rs.)    |
|---------------------------------------------|----------|
| Variable Cost:                              |          |
| Material                                    | 2,10,000 |
| Labour (Rs.1,50,000 × 80%)                  | 1,20,000 |
| Factory Overheads (Rs.92,000 × 60%)         | 55,200   |
| Administrative Overheads (Rs. 40,000 × 35%) | 14,000   |
| Commission (8% on Rs.6,00,000) (W.N1)       | 48,000   |
|                                             |          |

| Fixec<br>Labo<br>Facto<br>Admi<br>Total<br>Profi<br>Sales<br>Sales | I Cost:<br>ur (Rs.1,50,000 × 20%)<br>pry Overheads (Rs.92,000 × 40%)<br>inistrative Overheads (Rs.40,000 × 65%)<br>Cost<br>t (W.N1)<br>Proceeds (W.N1)<br>Price per bottle $\left(\frac{\text{Rs.6,00,000}}{40,000 \text{ Bottles}}\right)$ |        |                                                            | 30,000<br>36,800<br><u>26,000</u><br>5,40,000<br><u>60,000</u><br>6,00,000<br>15 |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------|----------------------------------------------------------------------------------|
| (ii)                                                               | <b>Calculation of Break-even Point</b><br>Sales Price per Bottle                                                                                                                                                                            | =      | Rs.14                                                      |                                                                                  |
|                                                                    | Variable Cost per Bottle                                                                                                                                                                                                                    | =      | Rs.4,44,000 (W.N2)<br>40,000 Bottles                       |                                                                                  |
|                                                                    | Contribution per Bottle                                                                                                                                                                                                                     | =<br>= | Rs.11.10<br>Rs.14 – Rs.11.10<br>Ps 2.90                    |                                                                                  |
|                                                                    | Break -even Point                                                                                                                                                                                                                           | _      | K3.2.70                                                    |                                                                                  |
|                                                                    | (in number of Bottles)                                                                                                                                                                                                                      | =      | Fixed Costs<br>Contribution per Bottle                     |                                                                                  |
|                                                                    |                                                                                                                                                                                                                                             | =      | $\frac{\text{Rs.92,800}}{\text{Rs.2.90}}$ = 32,000 Bottles |                                                                                  |
|                                                                    | Break- even Point<br>(in Sales Value)                                                                                                                                                                                                       | =<br>= | 32,000 Bottles × Rs.14<br>Rs.4.48.000                      |                                                                                  |
| Worl<br>W.N.                                                       | king Note<br>-1                                                                                                                                                                                                                             |        |                                                            |                                                                                  |
| Let th                                                             | ne Sales Price be 'x'                                                                                                                                                                                                                       |        |                                                            |                                                                                  |
|                                                                    | Commission                                                                                                                                                                                                                                  | =      | $\frac{8x}{100}$                                           |                                                                                  |
|                                                                    | Profit                                                                                                                                                                                                                                      | =      | $\frac{10x}{100}$                                          |                                                                                  |
|                                                                    | х                                                                                                                                                                                                                                           | =      | $4,92,000 + \frac{8x}{100} + \frac{10x}{100}$              |                                                                                  |
|                                                                    | 100x - 8x - 10x                                                                                                                                                                                                                             | =      | 4,92,00,000                                                |                                                                                  |
|                                                                    | 82x                                                                                                                                                                                                                                         | =      | 4,92,00,000                                                |                                                                                  |
|                                                                    | Х                                                                                                                                                                                                                                           | =      | 4,92,00,000 / 82<br>Rs 6 00 000                            |                                                                                  |
|                                                                    |                                                                                                                                                                                                                                             | =      | 1/2.0,00,000                                               |                                                                                  |

#### W.N.-2 Total Variable Cost

|                                            | (Rs.)    |
|--------------------------------------------|----------|
| Material                                   | 2,10,000 |
| Labour                                     | 1,20,000 |
| Factory Overheads                          | 55,200   |
| Administrative Overheads                   | 14,000   |
| Commission [(40,000 Bottles × Rs.14) × 8%] | 44,800   |
| Total                                      | 4,44,000 |

### Answer-3:

(i)

Let x<sub>1</sub>, x<sub>2</sub> and x<sub>3</sub> respectively be the amounts in tons of grades A, B & C used. The constraints are:

Phosphorus content must not exceed 0.03%

 $0.02 x_1 + 0.04 x_2 + 0.03 x_3 \qquad \qquad \leq \qquad \qquad 0.03 \left( x_1 + x_2 + x_3 \right)$ 

|        | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-X_1 + X_2$                                                          | <           | 0                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|----------------------|
| (ii)   | Ash content must not excee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed 3%                                                                 |             |                      |
|        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $x_1 + 2x_2 + 5x_3$                                                   | <u>&lt;</u> | $3(x_1 + x_2 + x_3)$ |
|        | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-x_2 + 2x_3$                                                         | <u>&lt;</u> | 0                    |
| (iii)  | Total quantity of fuel requir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed is not more                                                        | than 100 to | ons.                 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x_1 + x_2 + x_3$                                                     | <u>&lt;</u> | 100                  |
| The M  | lathematical formulation of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e problem is:                                                         |             |                      |
| Maxir  | nize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |             |                      |
|        | $Z = 12x_1 + 15x_2 + 14x_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |             |                      |
|        | Subject to the Constraints:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |             |                      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-X_1 + X_2$                                                          | <u>&lt;</u> | 0                    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-x_2 + 2x_3$                                                         | <           | 0                    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x_1 + x_2 + x_3$                                                     | <u>&lt;</u> | 100                  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>X</b> <sub>1</sub> , <b>X</b> <sub>2</sub> , <b>X</b> <sub>3</sub> | <u>&gt;</u> | 0                    |
| Introc | lucing Slack Variables s <sub>1</sub> , s <sub>2</sub> , s <sub>3</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       |             |                      |
| Maxir  | nize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |             |                      |
|        | $Z = 12x_1 + 15x_2 + 14x_3 + 0s_1 + 10x_2 + 10x_3 + 0x_1 + 10x_2 + 10x_2 + 10x_3 + 10$ | $+ 0s_2 + 0s_3$                                                       |             |                      |
|        | Subject to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |             |                      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-X_1 + X_2 + S_1$                                                    | <u>&lt;</u> | 0                    |
|        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-x_2 + 2x_3 + s_2$                                                   | <u>&lt;</u> | 0                    |
|        | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $_1 + X_2 + X_3 + S_3$                                                | <u>&lt;</u> | 100                  |
|        | x <sub>1</sub> , x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2, X3, S1, S2, S3                                                     | <u>&gt;</u> | 0                    |
| We sh  | all prepare the simplex tablea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | u as follows:                                                         |             |                      |

0 SIMPLEX TABLEAU-I

|    | Cj→                   |                                                 |            | 15         | 14         | 0          | 0  | 0          | Min.  |
|----|-----------------------|-------------------------------------------------|------------|------------|------------|------------|----|------------|-------|
| CB | Basic<br>Variable (B) | Value of Basic<br>Variables b(=X <sub>B</sub> ) | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>S</b> 1 | S2 | <b>S</b> 3 | Ratio |
| 0  | S <sub>1</sub>        | 0                                               | -1         | 1          | 0          | 1          | 0  | 0          | ←0    |
| 0  | <b>S</b> <sub>2</sub> | 0                                               | 0          | -1         | 2          | 0          | 1  | 0          |       |
| 0  | S <sub>3</sub>        | 100                                             | 1          | 1          | 1          | 0          | 0  | 1          | 100   |
|    |                       | $Z_{j} = \sum C_{Bi} X_{j}$                     | 0          | 0          | 0          | 0          | 0  | 0          |       |
|    |                       | C <sub>j</sub> – Z <sub>j</sub>                 | 12         | 15↑        | 14         | 0          | 0  | 0          |       |

### SIMPLEX TABLEAU-II

| Cj→ |                       |                                                 | 12         | 15         | 14         | 0                  | 0  | 0          | Min.              |
|-----|-----------------------|-------------------------------------------------|------------|------------|------------|--------------------|----|------------|-------------------|
| Св  | Basic<br>Variable (B) | Value of Basic<br>Variables b(=X <sub>B</sub> ) | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | S1                 | S2 | <b>S</b> 3 | Ratio             |
| 15  | X2                    | 0                                               | -1         | 1          | 0          | 1                  | 0  | 0          | -                 |
| 0   | S <sub>2</sub>        | 0                                               | -1         | 0          | 2          | 1                  | 1  | 0          | -                 |
| 0   | <b>S</b> 3            | 100                                             | 2          | 0          | 1          | -1                 | 0  | 1          | <mark>←</mark> 50 |
|     |                       | $Z_j = \sum C_{Bi} X_j$                         | -15        | 15         | 0          | 15                 | 0  | 0          |                   |
|     |                       | C <sub>j</sub> - Z <sub>j</sub>                 | 27↑        | 0          | 14         | - <mark>1</mark> 5 | 0  | 0          |                   |

### SIMPLEX TABLEAU-III

|    | Ci→                   |                                                 |    | 15         | 14             | 0              | 0  | 0                | Min.  |
|----|-----------------------|-------------------------------------------------|----|------------|----------------|----------------|----|------------------|-------|
| CB | Basic<br>Variable (B) | Value of Basic<br>Variables b(=X <sub>B</sub> ) | Xı | <b>X</b> 2 | <b>X</b> 3     | S1             | S2 | <b>S</b> 3       | Ratio |
| 15 | X2                    | 50                                              | 0  | 1          | $\frac{1}{2}$  | 1<br>2         | 0  | 1<br>2           | 100   |
| 0  | \$ <sub>2</sub>       | 50                                              | 0  | 0          | 5<br>2         | 1<br>2         | 1  | $\frac{1}{2}$    | ←20   |
| 12 | x <sub>1</sub>        | 50                                              | 1  | 0          | $\frac{1}{2}$  | $-\frac{1}{2}$ | 0  | 1<br>2           | 100   |
|    |                       | $Z_{j} = \sum C_{Bi} X_{j}$                     | 12 | 15         | $\frac{27}{2}$ | <u>3</u><br>2  | 0  | <u>27</u><br>2   |       |
|    |                       | C <sub>i</sub> – Z <sub>i</sub>                 | 0  | 0          | $\frac{1}{2}$  | $-\frac{3}{2}$ | 0  | _ <u>27</u><br>2 |       |

#### SIMPLEX TABLEAU-IV

|                  | Cl-                   |                                                 | 12         | 15         | 14         | 0                      | 0                     | 0                      |
|------------------|-----------------------|-------------------------------------------------|------------|------------|------------|------------------------|-----------------------|------------------------|
| Св               | Basic<br>Variable (B) | Value of Basic<br>Variables b(=X <sub>B</sub> ) | <b>X</b> 1 | <b>X</b> 2 | <b>X</b> 3 | <b>S</b> 1             | <b>S</b> 2            | <b>S</b> 3             |
| <mark>1</mark> 5 | X2                    | 40                                              | 0          | 1          | 0          | 25                     | 1<br>5                | 2<br>5                 |
| 14               | X <sub>3</sub>        | 20                                              | 0          | 0          | 1          | 1<br>5                 | 2<br>5                | $\frac{1}{5}$          |
| <mark>1</mark> 2 | X <sub>1</sub>        | 40                                              | 1          | 0          | 0          | $-\frac{3}{5}$         | $-\frac{1}{5}$        | $\frac{2}{5}$          |
|                  |                       | $Z_{j=} \sum C_{Ri} X_{j}$                      | 12         | 15         | 14         | 8<br>5                 | 1<br>5                | 68<br>5                |
|                  |                       | C <sub>i</sub> – Z <sub>i</sub>                 | 0          | 0          | 0          | _ <mark>8</mark><br>_5 | _ <mark>1</mark><br>5 | _ <mark>68</mark><br>5 |

Since all numbers in the  $C_j - Z_j$  row are either negative or zero, the optimum solution to the given problem has been obtained. The optimum solution is  $x_1 = 40$ ,  $x_2 = 40$  and  $x_3 = 20$  withmaximum Z = Rs.1,360. Hence, the optimum product mix is 40 tons of grade A, 40 tons of grade B and 20 tons of grade C to get maximum profit of Rs. 1,360.

#### Answer-4:

Since, Demand and Supply for the product is not equal, hence, it should be made equal by introducing dummy row with a supply of 40 units. The matrix will be as follows-

|        | S <sub>1</sub> | S <sub>2</sub> | <b>S</b> <sub>3</sub> | Supply |
|--------|----------------|----------------|-----------------------|--------|
| F1     | 6              | 6              | 1                     | 10     |
| F2     | <b>-</b> 2     | -2             | -4                    | 150    |
| F3     | 3              | 2              | 2                     | 50     |
| F4     | 8              | 5              | 3                     | 100    |
| Dummy  | 0              | 0              | 0                     | 40     |
| Demand | 80             | 120            | 150                   | 350    |

To make the above matrix into a minimization matrix, all the cell value shall be deducted the highest cell value i.e. 8. The minimized transportation matrix will be as follows-

|        | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | Supply           |
|--------|----------------|----------------|----------------|------------------|
| F1     | 2              | 2              | 7              | 10               |
| F2     | 10             | 10             | 12             | 150              |
| F3     | 5              | 6              | 6              | <mark>5</mark> 0 |
| F4     | 0              | 3              | 5              | 100              |
| Dummy  | 8              | 8              | 8              | 40               |
| Demand | 80             | 120            | 150            | 350              |

The Initial solution by Vogel's Approximation Method (VAM)-

|       | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | Supply     | Diff. |
|-------|----------------|----------------|----------------|------------|-------|
| F1    | 2              | 2 10           | 7              | 10/0       | 05    |
| F2    | 10             | 10 90          | 12 60          | 150/60/0   | 02222 |
| F3    | 5              | 6              | 6 50           | 50/0       | 1000- |
| F4    | 0 80           | 3 20           | 5              | 100/20/0   | 322   |
| Dummy | 8              | 8              | 8 40           | 40/0       | 00000 |
| Deman | d 80/          | 0 120/1        | 10/90/0 150    | )/100/60/0 | 350   |
| Diff. | 2              |                | 1              | 1          |       |
|       | -              |                | 1              |            |       |
|       |                |                | 3              | 1          |       |
|       |                |                | 2              | 2          |       |

2

-

4

|        |      | 1               |            |           | I     |
|--------|------|-----------------|------------|-----------|-------|
|        | S1   | S <sub>2</sub>  | <b>S</b> 3 | Supply    | Diff. |
| F1     | 2    | 2 10            | 7          | 10/0      | 05    |
| F2     | 10   | 10 40           | 12 110     | 150/110/0 | 02222 |
| F3     | 5    | 6 50            | 6          | 50/0      | 1000- |
| F4     | 0 80 | 3 20            | 5          | 100/20/0  | 322   |
| Dummy  | 8    | 8               | 8 40       | 40/0      | 0000  |
| Demand | 80/0 | 120/110/90/40/0 | 150/110/0  | 350       |       |
| Diff.  | 2    | 1               | 1          |           | 4     |
|        |      | 1               | 1          |           |       |
|        | -    | 3               | 1          |           |       |
|        | 18   | 2               | 2          |           |       |
|        | 1.5  | 2               | 4          |           |       |

The above solution can also be solved by making the profit matrix into loss in first step and then introduction of dummy row, the initial solution under VAM will be same.

#### Answer-4:

Product H & T are joint products and produced in the ratio of 1:2 from the same directmaterial- M. Production of 40,000 additional units of T results in production of 20,000 units of H.

### Statement Showing "Contribution under Existing Situation"

| Particulars                                          | Amount (Rs.) | Amount (Rs.) |
|------------------------------------------------------|--------------|--------------|
| Sales Value:                                         |              |              |
| H – 2,00,000 units @ Rs. 25 per unit                 | 50,00,000    |              |
| T – 4,00,000 units @ Rs. 20 per unit                 | 80,00,000    | 1,30,00,000  |
| Less: Material- M (12,00,000 units @ Rs. 5 per unit) |              | 60,00,000    |
| Less: Other Variable Costs                           |              | 42,00,000    |
| Contribution                                         |              | 28,00,000    |

Let Minimum Average Selling Price per unit of H is Rs. X Statement Showing "Contribution after Acceptance of Additional Order of 'T'"

| Particulars                                                | Amount (Rs.)    | Amount (Rs.)                  |
|------------------------------------------------------------|-----------------|-------------------------------|
| Sales Value:                                               |                 |                               |
| H – 2,20,000 units @ Rs. X per unit                        | 2,20,000 X      |                               |
| T – 4,00,000 units @ Rs.20 per unit                        | 80,00,000       |                               |
| 40,000 units @ Rs.15 per unit                              | <u>6,00,000</u> | <u>2,20,000 X + 86,00,000</u> |
| Less: Material- M (12,00,000 units × 110%) @ Rs.5 per unit |                 | 66,00,000                     |
| Less: Other Variable Costs (Rs.42,00,000 × 110%)           |                 | 46,20,000                     |
| Contribution                                               |                 | 2,20,000 X - 26,20,000        |

### Minimum Average Selling Price per unit of H

| Contribution after additional order of T               | =   | Contribution under existing production |
|--------------------------------------------------------|-----|----------------------------------------|
| 2,20,000 X – 26,20,000                                 | =   | 28,00,000                              |
| 2,20,000 X                                             | =   | 54,20,000                              |
| Х                                                      | =   | Rs.24.64                               |
| Minimum Average Selling Price per unit of H is Rs. 24. | .64 |                                        |

#### Answer–6 : Revised P/V Ratio and Ranking of Products

| Product | Existing<br>P/V<br>Ratio<br>(%) | Increase in Raw<br>Material Cost as<br>% of Sales Value | Revised<br>P/V<br>Ratio<br>(%) | Revised Raw<br>Material as %<br>of Sale Value | Contribution<br>Per Rs.100 of<br>Raw Material<br>(%) | Rank |
|---------|---------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------|------|
| Α       | 20                              | 3.5                                                     | 16.5                           | 38.50                                         | 42.86%                                               | <br> |
| В       | 30                              | 4                                                       | 26                             | 44.00                                         | 59.09%                                               | II   |
| С       | 40                              | 5                                                       | 35                             | 55.00                                         | 63.64%                                               | I    |
| D       | 10                              | 6                                                       | 4                              | 66.00                                         | 6.06%                                                | IV   |

Maximum Sales Potential (Rs. in lakhs)

A 900 (30 % of Rs.3,000)

| B 900 | (30 % of Rs.3,000) |
|-------|--------------------|
|-------|--------------------|

- C 900 (30 % of Rs.3,000)
- D 1,200 (40 % of Rs.3,000)

### Allocation of Raw Material

(Supply is Restricted to Rs. 1,535 lacs in Order of Raw Material Profitability)

| Product | Rank | Sales<br>(Rs. in lakhs) | Raw Material per<br>(Rs. 100 lakhs Sales) | Raw Material<br>Required | Balance Raw<br>Material |
|---------|------|-------------------------|-------------------------------------------|--------------------------|-------------------------|
| С       | I    | 900                     | 55                                        | 495                      | 1,040                   |
| В       | II   | 900                     | 44                                        | 396                      | 644                     |
| Α       |      | 900                     | 38.5                                      | 346.5                    | 297.5                   |
| D       | IV   | 451**                   | 66                                        | 297.5*                   | 0                       |

\* Balancing figure, hence sales will be restricted to 451\*\* lakhs [297.5 / 66%] **Profitability Statement** 

|                           | Existing (2009) (₹ in Lakhs) |           | Proposed (2010) (₹ in Lakhs) |                                            |           |                       |  |        |
|---------------------------|------------------------------|-----------|------------------------------|--------------------------------------------|-----------|-----------------------|--|--------|
| Product                   | Sales                        | P/V Ratio | Contribution                 | Sales                                      | P/V Ratio | Contribution          |  |        |
| A                         | 900                          | 20        | 180                          | 900                                        | 16.5      | 148.5                 |  |        |
| В                         | 300                          | 30        | 90                           | 900                                        | 26        | 234                   |  |        |
| C                         | 600                          | 40        | 240                          | 900                                        | 35        | 315                   |  |        |
| D                         | 1,200                        | 10        | 120                          | 451                                        | 4         | 18.04                 |  |        |
| Less: Fixe                | Less: Fixed Costs*           |           | 330                          | Less: Fixed Costs*                         |           | 330                   |  |        |
| Profit befo<br>and Intere | re Deprecia<br>st            | ation     | 300                          | 00 Profit before Depreciation and Interest |           | 385.54                |  |        |
| Less: Depi                | reciation                    |           | 225                          | Less: Depreciation                         |           | 25 Less: Depreciation |  | 225.00 |
| Less: Inter               | rest                         |           | 115.5                        | .5 Less: Depreciation                      |           | 115.50                |  |        |
| Profit befo               | re Tax                       |           | (40.5)                       | ) Profit before Tax                        |           | 45.04                 |  |        |

\* Balancing Figure (Contribution – Profit before Depreciation & Interest) The increase of contribution of Rs.85.54 in 2010 will set off loss of Rs.40.50 lakhs and result inprofit of Rs.45.04 lakhs.